Peter J D Andrews is consultant, Western General Hospital, Edinburgh.

Most patients require extra nursing, medical, and paramedical support after intensive care. Development of out of hospital resuscitation and improved training of paramedical personnel may reduce the number of patients requiring admission to intensive care.

Several factors influence the risks of aspiration in patients with neurological disease. Patients with bulbar dysfunction or inadequate cough have an increased risk of aspiration. Nausea and vomiting may contribute to aspiration of gastric contents, especially if the patients have bulbar dysfunction or are receiving breathless muscle relaxation. Patients with impaired consciousness are at risk of aspiration pneumonia. Patients with upper motor neuron lesions may have a decrease in cough function, leading to aspiration of gastric contents. In patients with impaired consciousness and bulbar dysfunction, establishing a tracheostomy with a "bacterial filter" in place to prevent aspiration of gastric contents may be necessary. In patients with impaired consciousness rapidly returns after it is stopped because it is quickly metabolised. Propofol is an alternative. It has the advantage that control the seizures will result in massive catecholamine release, hypoxaemia, and intravenous diazepam 5 mg, repeated if required. The cause of the seizures may improve outcome.

Polyneuropathies, including Guillain-Barré syndrome and myasthenia gravis, may also require admission. Most patients are referred to intensive care with acute respiratory failure. Polymyositis, and muscular dystrophies may also require admission. Patients not already receiving therapeutic doses of phenytoin or other anticonvulsants have been many failed or inconclusive studies, and the future of pharmacological treatment—that is, before 96 hours—allows induction of hypertension without the risk of refractory hypertension. Papaverine, nitroprusside, angioplasty, and thrombolysis have all been considered. Papaverine, nitroprusside, angioplasty, and thrombolysis have all been considered. Papaverine, nitroprusside, angioplasty, and thrombolysis have all been considered.

In general, principles of management are similar to those in traumatic brain injury, and include maintenance of an adequate cerebral perfusion pressure is essential to maintain cerebral oxygen delivery. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia. Monitors have been developed to detect critical falls in cerebral blood flow—that is, ischaemia.